

Keck Interferometer Update

Mark Colavita, Jet Propulsion Laboratory
Peter Wizinowich, W. M. Keck Observatory

Interferometry in Optical Astronomy II 8/22/2002

The real author list

- At JPL: A. Booth, M. Colavita, S. Crawford, M. Creech-Eakman, G. Eychaner, G. Hardy, E. Hovland, R. Johnson, J. Kelley, K. Ko, R. Ligon, B. Mennesson, J. Moore, A. Niessner, D. Palmer, L. Reder, G. Serabyn, M. Shao, R. Smythe, M. Swain, A. Tumminello, G. van Belle, G. Vasisht
- At Keck Observatory: S. Acton, R. Boutell, J. Beletic, J. Bell, F. Chaffee, D. Chan, J. Chock, R. Cohen, J. Gathright, M. Hess, M. Hrynevych, R. Kendrick, P. Kurpis, D. Le Mignant, H. Lewis, C. Nance, C. Neyman, A. Rudeen, T. Saloga, P. Stomski, K. Summers. K. Tsubota, J. Vause, P. Wizinowich
- At the Interferometry Science Center: R. Akeson, A. Boden, C. Felizardo, J. Herstein, C. Koresko, A. Sargent

See: A. Sargent, "Interferometry Science Center (ISC)," 4838-19

 Keck Interferometer is funded by NASA as part of its Origins program, and is a joint development of these three organizations

Outline

- Instrument status
- First fringes
- Current activities

Keck Interferometer modes

- High sensitivity fringe visibility (V2) measurements
 - Combines the AO-corrected beams
 - V² measurements in the near-IR
- Infrared nulling at 10 um
 - Nulling beam combiner to suppress central star
 - Measure zodiacal dust around nearby stars
- Differential-phase interferometry
 - Multi-color fringe measurements
 - Detect the fringe shift caused by hot companions to nearby stars

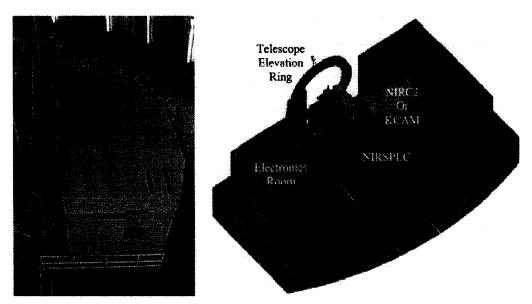
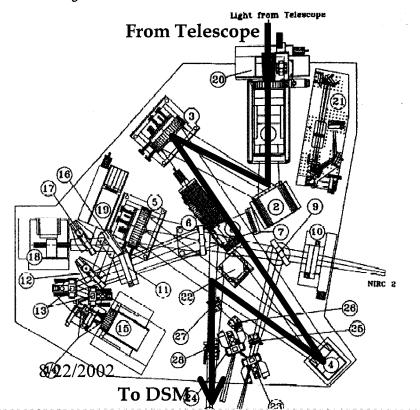
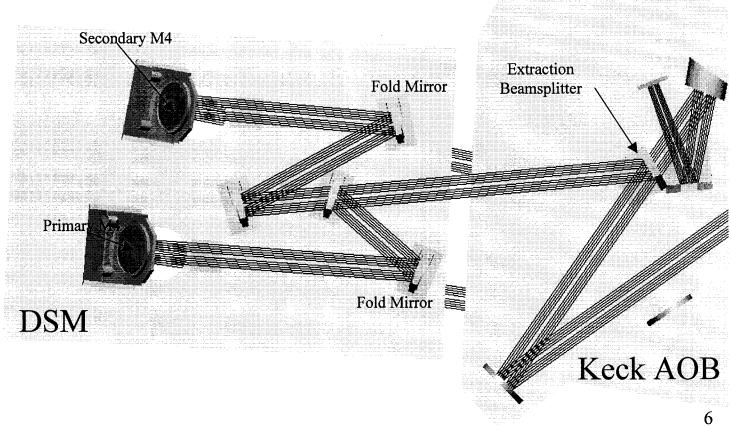



Figure 1. Left: The AO enclosure on the left Nasmyth platform of the Keck II telescope.

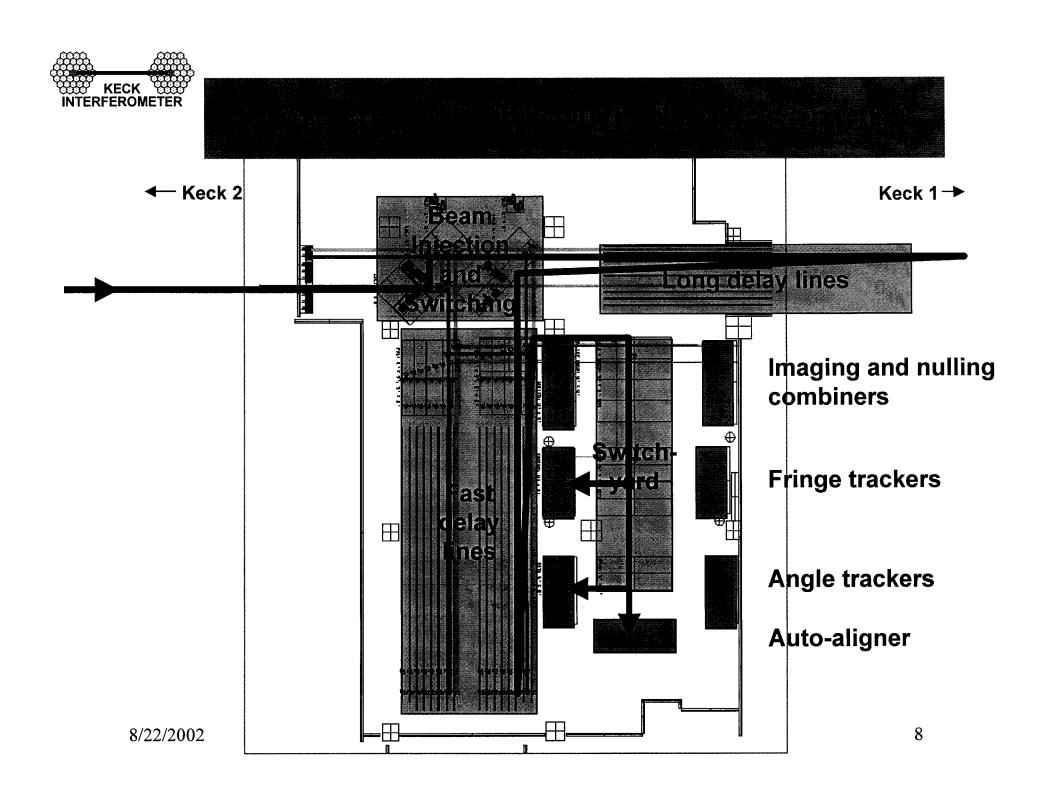
Right: A schematic view of the AO enclosure with its roof removed.


Telescope & AO

- Extract beam in collimated space on AO bench after deformable mirror
- 9 m inscribed circle on Keck primary maps to 112 mm collimated beam

Dual star module

- Slides in adjacent to AO system like other Nasmyth instruments
- · Sends collimated beam into coude beam train



Beam transport

- Coude train relays light to base of telescope
- Transport optics relay light through basement
 - Mounts include targets and actuators for remote alignment

Long delay lines

- Installed in coude tunnel
- Provides coarse delay positioning (static during observation)
- Double-height mirror accommodates two beams for phase referencing

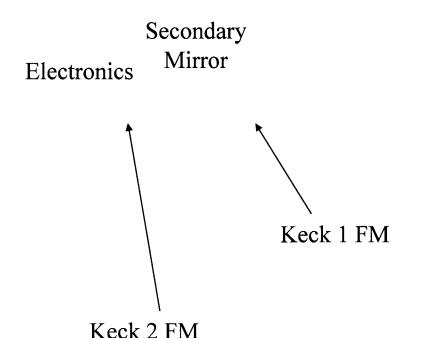


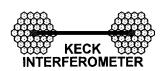
Fast delay lines

- 4-stage cat's-eye design
- Fiber-fed laser metrology
- Delay range +/- 15m
- High speed position and rate commanding

Metrology launchers

FATCAT (Fringe tracker)


- Free-space Michelson beam combination at H and K bands
- HAWAII array camera fed by single-mode fluoride fibers
- White-light and spectrometer channels; frame rates of 100-1000 Hz
- Fringe tracking with coherent fringe demodulation, closed-loop to delay line


Angle tracker

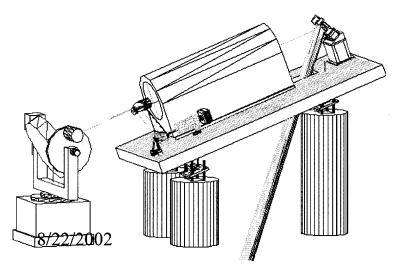
IR Camera

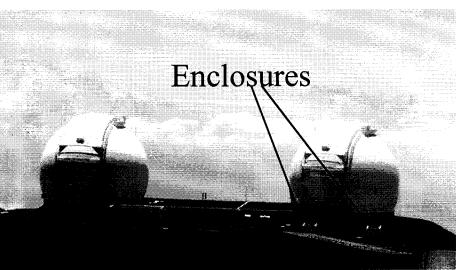
Primary Mirror

- H and J band angle tracking
- DCR corrector for good sky coverage
- Images from two Kecks multiplexed onto one quadrant of HAWAII array
- 100 Hz readout
- High-speed updates to local tip/tilt mirror
- Low-speed off-loads to AO system

Interferometer control system

- VME / VxWorks / PowerPCs
 - High-rate
 - » RTC Toolkit
 - Medium rate
 - » EPICS/KTL
- Unix
 - GUIs
 - » Java, Tcl/Tk
 - Other tools
 - » Configuration, archive, sequencing, planning


See: A.J. Booth et al. "Overview of the control system for the Keck interferometer," 4848-12 T. Lockhart, "RTC: a distributed real-time control system toolkit," 4848-21


L.J. Reder et al., "Using scripting languages in optical interferometry," 4848-32 8/22/2002

First siderostat fringes

- Initial fringes using the siderostats were obtained on Feb. 22, 2001
 - Checked out hardware to be used with Kecks on next run
- Instrument configuration
 - Two 50-cm siderostats feeding fixed 40 cm telescopes (essentially the same as the PTI front-end optics)
 - Angle tracking at H band controlling fast steering mirrors behind telescopes
 - 10 cm compressed beam routed to beam combining lab
 - Remaining configuration like for Kecks

First Keck-Keck fringes

- March engineering run: 3 1/2-nights on the two Kecks March 12-14, 2001
- Instrument configuration
 - Two 10 m Kecks feeding interferometer via coude optics
 - Natural guide star adaptive optics running on both telescopes using R and I light
 - Slow guiding corrections to AO system from interferometer angle tracker at H band
 - Fringe detection at K band using interferometer fringe camera
 - » Synchronous demodulation (a.k.a. fringe scanning) with 4bin algorithm
 - » Single broadband K channel
 - Laser monitored fast delay lines

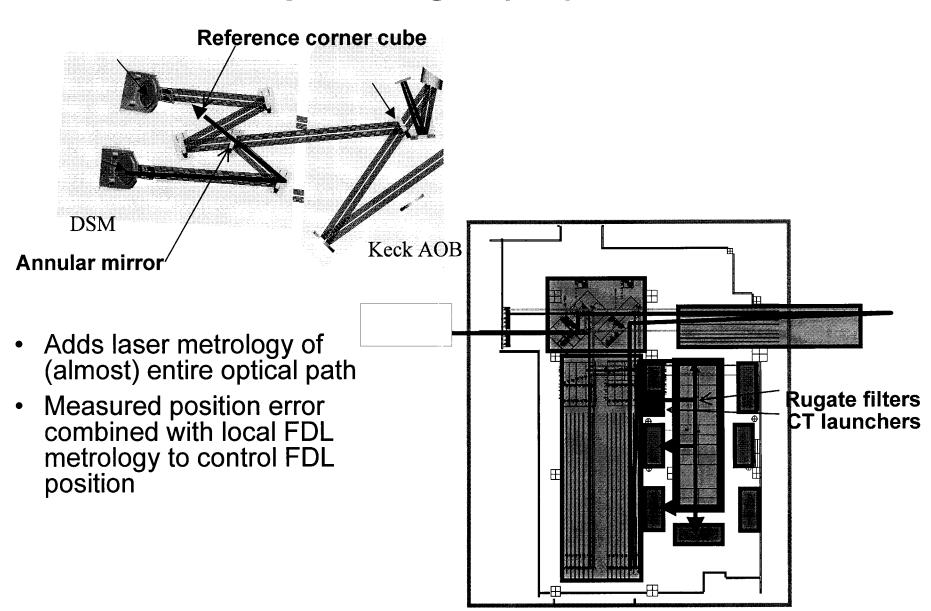
15

System visibility tests

- Test on March 14, 2001
- Single broadband K channel, no fringe centering yet
 - Range of visibilities correspond to different points on fringe envelope
- Peak measured V² ~
 55%
 - Implies system V²
 of ~75% for given
 source diameters

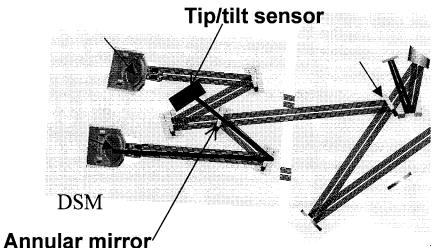
Keck-Keck baseline stability

- Test on March 14
- 9 stars used to solve for Keck-Keck baseline using a priori star positions
- Delay range: +/- 10m (fixed LDL position)
- Delay residuals after solution:
 - ~100 μm rms
 using ideal pivot
 model

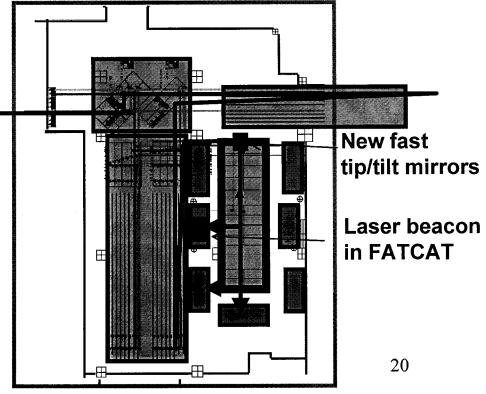


Recent work

- System validation
- V² mode improvement
 - Performance, especially improving OPD and tilt stability
 - Functionality
 - Automation
- Mode handoff process
- NASA shared risk science

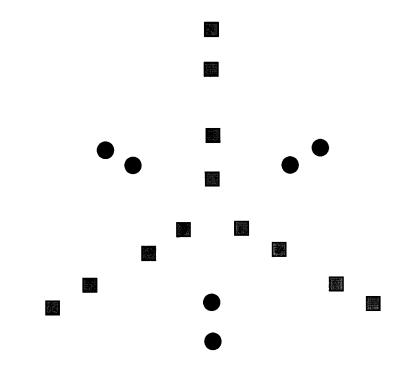

See: M. Hess, et al. "Strategy for identifying and mitigating facility vibrations at WMKO", 4837-39 M. Hrynevych, et al., "Keck Interferometer: from development phase to facility class instrument," 4844-29

Internal pathlength (CT) metrology



Tip/Tilt metrology

TTM system


- Adds sensor at DSM which measures tilt of boresight laser
 - Adds fast tip/tilt mirrors in lab
 - Fast servo control of t/t mirrors
 - » Also incorporates slower mirror control using error measured with starlight angle tracker (KAT)

Accelerometer feedforward system

- For each telescope
 - 6 accels installed on primary
 - 3 each on secondary, tertiary
 - 3 on AOB and DSM
- Signals combined to generate feedforward correction to FDL to cancel OPD variation contributed by telescope

Validation tests

- V² mode characterization and validation
- In progress includes measurement of sources with known parameters (e.g. binaries with well-determined orbits from PTI)

HD120064, April 27, 2002

Other activities

- Shared-risk teams
 - NRA released by NASA to select teams to participate in sharedrisk science with Keck Interferometer
 - 4 teams selected last October
 - » Danchi et al.
 - » Kulkarni et al.
 - » Monnier et al.
 - » Traub et al.
 - Initial shared-risk observations in Jun 2002
- Begin V² mode handover process
- Instrument tasks for improved automation and functionality

Future activities

- Nulling and differential phase modes
 - Summit preparations
 - Continued laboratory development
 - Installation and testing

See:

- E. Serabyn, "Nulling interferometry", 4838-125
- C.D. Koresko et al., "Longitudinal dispersion control for the Keck Interferometer nuller," 4838-127
- -C.D. Koresko et al., "Tabletop midinfrared nulling testbed ...", 4838-132
- -Y. Gursel, "Picometer-accuracy lasermetrology gauge for differential phase," 4838-167

Don Savage

Public Affairs Officer

NASA Headquarters, Washington, DC

Phone: 202/358-1547